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Plastic deformation in a structurally well-relaxed two-dimensional atomic glass was
simulated by a computer molecular dynamics approach. The simulation, which was
carried through yielding and to substantial plastic strains, demonstrated that the
priricipal mechanism of plastic strain production is by local partly dilatant shear
transformations nucleated preferentially in the boundaries of liquid-like material
separating the small quasi-ordered domains that form when the glass is well relaxed.
Under imposed forward shear-strain increments, local shear transformations in
atomic clusters were found to be mostly in the same direction as the applied stress.
There were, however, substantial levels of shear transformations in other random
directions, including many opposed to the applied stress. In all instances, however,
nucleaton of shear transformations reduced the Gibbs free energy monotonically,
which is governed largely by the locked-in excess enthalpies of the glassy state. At
shear strains above 15 9,, localization of shear into bands was observed to begin. This
steadily intensified and formed well-defined sharp shear bands into which all the
shear strain became concentrated by the end of the simulation at a strain of 27 %,. A
strong correlation was found between the tendency for shear localization and retained
shear-induced dilatation.

+ On leave from the Institute for Precious Metals, Kunming, Yunan Province, People’s Republic of China.
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614 D.DENG, A.S.ARGON AND S.YIP

1. INTRODUCTION

Amorphous solids make up a large group ranging from intrinsically brittle inorganic ones, such
as the familiar oxide glasses, to glassy metallic alloys and polymers, which exhibit extensive
ductility in the unaged form and are embrittled when aged. Although it is very difficult to
initiate plastic flow in the intrinsically brittle family of glasses short of superposing very large
components of pressure to suppress fracture, plastic flow to large strains is readily achievable
in most unaged glassy metallic alloys and polymers.

The mechanisms of deformation in these materials have long been a source of controversy.
While some investigators have sought to explain the plasticity of glasses by generalized
dislocations (Gilnian 1969; Li 1976), others have attributed it to the same cluster relaxations
that give rise to viscous behaviour (Orowan 1951; Spaepen 1977; Argon 1979). As drawing
conclusions from observations of external features such as shear localization zones can be risky,
and because the usual powerful methods of direct observations of defects based on diffraction
contrast are inoperative, simulation of the deformation by various techniques have proved to
be most fruitful. In one of the first such attempts, Argon and co-workers (Argon & Kuo 1979;
Argon & Shi 1982) have performed shearing experiments on disordered Bragg bubble rafts as
two-dimensional analogues of a real atomic glass, and analysed the kinematics and energies of
this deformation by means of an inter-bubble pair potential (Shi & Argon 1982). These
analogue simulations have demonstrated convincingly that the mechanism of plastic flow in
simple disordered solids indeed involves very localized atomic cluster relaxations, and that
dislocation glide, when present at all, plays only a minor role. These results largely confirm the
very limited amount of the earlier three-dimensional computer simulations (Srolovitz et al.
1983). Here we present the results of a new two-dimensional computer simulation of the plastic
shearing of the same two-component model amorphous solid discussed in the three
accompanying communications, to be referred to here as I-III (Deng ef al. 19894, b, ¢).

2. DETAILS OF SIMULATION
2.1. The simulation cell

A two-component material composed of equal numbers of Cu and Zr atoms was chosen for
the simulation, because single-component materials proved to crystallize too rapidly below the
melting point (part I). As visualization of the kinematic details of the local deformation
processes were of primary interest, the simulation was carried out in two-dimensional cells
subjected to periodic boundary conditions, to avoid spurious end effects. When a preliminary
simulation cell containing 144 atoms on which detailed simulations of melting and quenching
(parts I and II) had been carried out, gave indications of being too small for the shearing
experiments, a larger two-dimensional simulation cell containing 780 atoms was chosen for
most of the results to be presented here. This cell, which was nearly perfectly square, contained
in its initial crystalline form 26 close-packed rows of 30 atoms. As we have discussed in
connection with our simulations for melting, quenching, and structural relaxations, there are
certain limitations of two-dimensional models when compared with three-dimensional models.
Nevertheless, on the basis of our findings, if two-dimensional cells containing 780 atoms are
necessary to have minimal border effects and constraints, then a proper three-dimensional
model should have over 2 x 10* atoms. This would make the simulations themselves, as well as
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PLASTIC DEFORMATION IN AN ATOMIC GLASS 615

the graphical representation and analysis of the deformation, exceedingly costly. We are of the
opinion that the results of our two-dimensional simulation have captured the most important
qualitative details, and have further given quantitative measures that compare quite well with
experimental information on amorphous metallic alloys. Thus, the majority of the results that
we present relate to the large 780 atom cell. We have, however, included a number of
additional results derived from the smaller simulation cell of only 144 atoms.

The details of the Cu—Zr pair potential, as well as the details of the procedures in carrying
out the molecular dynamics simulation with it were presented in part I, which also contains
nomenclature, and normalization quantities. The most important of these normalization
quantities are: E;, (=0.15¢V), the binding energy for the Cu—Cu pair potential; 7,
(= 2.556 AT), the critical atomic separation in the Cu-Cu potential where the potential
becomes zero; for two-dimensional stresses, Ey/r2 (= 0.367 N m™); for time (12m,/E,)}, the
fundamental atomic period for Cu (= 5.38 x 107*®5), where m, = 10.63 x 1072 g is the atomic
mass of Cu, and for temperatures, E,/k (= 1740 K). As the simulation mats are two-
dimensional, to obtain meaningful stresses in three-dimensions the non-dimensional stress
components and pressures must be multiplied by E,/r2 (= 1.44 GPa). In the simulations, the
fundamental time steps were taken as % of the above atomic fluctuation period.

2.2. State parameters and inelastic strains

Of fundamental interest in this simulation are the forms of inelastic strain production and
the local environments in which increments of inelastic strain develop under externally-
imposed conditions of stress or cell distortion. The most meaningful state parameters that
describe the local conditions have been defined in part II, in cdnnection with the topological
features of isothermal structural relaxations obtained in a prepa'rttory simulation to the present
one of plastic deformation. These local parameters of state are:

(1) the volume per atom £2(z) (the area of the Voronoi polyéon constructed around each
atom); .

(2) the free volume s,(7) of an atomic site (i.e., the excess volume per atom averaged over
the atom and its immediate neighbours — over and above the average volume per atom in the
entire simulation field);

(8) the atomic level stress tensor a,,(i) (defined for each site by the procedure of Born &
Huang (1954));

(4) atomic level elastic constants C,j,(i) (representing the local stiffnesses of each atomic
site) ;

(5) the net atomic site distortion parameter w’(i) defined as the ratio of the perimeter of a
Voronoi polygon of a site to the circumference of a circle having the same area. Of the atomic
level stresses, two scalar invariants are of particular interest: the atomic site two-dimensional
pressure, and the maximum (Mobhr circle) shear stress.

When the simulation cell is deformed by imposed shear increments, the local internal
increments of deformation are of interest. Most investigators who have performed similar
simulations have provided only atomic displacement fields, which in our opinion offer, at best,
only a confusing image of the local processes, as they need a reference origin, and are not free
of rigid body rotations, which are of no fundamental importance. For that reason, Argon and

t1A=10"m
45-2
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616 D.DENG, A.S. ARGON AND S.YIP

co-workers (Argon & Kuo 1979; Argon & Shi 1982) have given the local deformations as
atomic site shear-strain increments and dilatations, which need no reference origin and are free
of rigid body rotations. The tensor components of the strain increments have been defined as
weighted area integrals of the local deformation gradients as follows:

Aeaﬁ(i,At)=—2% f (ag‘/;‘ua—sfé)ds ()
_ 1 & [Au()) —Au, (i) | Auy(s) — Auy(i)
B e (1e)

where Au,(j) and Au,(i) are the displacement increments for atoms j and i in the « direction
occurring in the time increment between ¢ and ¢+ A, i.e. between the start and finish of an
imposed strain increment on the simulation cell; Aa and A are initial relative separations of
atoms j and ¢ in the a and f directions at time ¢. The term As,; represents the triangular area
of the Voronoi polygon (vP) of atom 7 that views the neighbouring atom j; s, is the total area
of the vp of atom 7, and the sum on j is over all neighbours of ¢ that enter into to description
of the vp of the atom ¢. These definitions of strain increments can also be transformed by the
divergence theorem into contour integrals around the periphery /; of the vp of each atom ¢,
when they become (in xy coordinates):

Ac,, (i, At) = %(— jg Au, dx+ § Au, dy) @)
_ 1S _(Au(y) +Au (i) (Auy(j) +Au, (1))
52 A S B

where Au,(j) and Au, (i) again represent the displacement increments for atoms j and ¢ in the
x direction occurring in the time increment between ¢ and ¢+ A¢ between the start and finish
of an imposed strain increment on the simulation cell, and Ax; represents the component in the
x direction of the edge of the vp viewing the neighbouring atom j of the central atom i, and
again, the sum on j is taken over all neighbours of ¢ that enter into the description of the vp
of the atom 1.

As with the local atomic level stresses, two scalar invariants of the local strain increments are
of special interest, the local dilatation Ae(), and the local increment of the (Mohr circle)
maximum shear strain Ay, . (7), which are defined as:

Ae(i) = Ae,, () + Ae,, (i), (3)
AY max (1) = 2((A€,, (i) — Ae,, (1)) + (Ae,, (1) )R (4)

In what follows, we will present our results primarily as atomic site information of the
current state and increment of inelastic strain.

2.3. The shearing simulation

The shearing simulations were carried out on two different sizes of periodic cells. In both
instances, the material was a two-dimensional mat composed of equal numbers of Cu and Zr
atoms, bound together by three different pair potentials, to take into account the Cu—Cu,
Zr—Zr, and Cu—Zr interactions. In both cases, the initial state of the material was a hexagonal
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PLASTIC DEFORMATION IN AN ATOMIC GLASS 617

two-dimensional crystal solid solution, in which the individual Cu and Zr atoms were placed
randomly. Both mats were melted in the computer and quenched in steps, at an average rate
of about 2 x 10° K s}, to a low temperature, followed by a period of structural relaxation of
the order of 4000 time steps. The details of the potentials, the melting and quenching
simulations, and the descriptions of the molten state, as well as the low temperature quenched
states, were described in detail in parts I and II. The small simulation cell, which contained
144 atoms in 12 rows of 12 close-packed atoms, was rectangular in shape, with the edge parallel
to the x axis being 159, longer than that parallel to the y axis. This cell, on which nearly all
the earlier melting, quenching and structural relaxations were performed (reported in parts I
and II) proved to give asymmetrical results upon being subjected to simple shear in the x and
the y directions. To rectify this asymmetry and also to incorporate a larger field to sample more
configurations, the second simulation cell was selected to be square in shape, with 30 vertical
stacks of close-packed rows containing 26 atoms each, and thus, consisting of 780 atoms on the
whole. To check the thermo-physical properties of this material, and relate them to those of the
smaller mat, the simulation for the large mat was also started with a melting and quenching
sequence identical to those for the smaller mat. The melting temperature and the glass
transition temperature for the larger mat were identical to those of the smaller mat. The only
difference between the two mats was a constant coefficient of expansion for the larger mat in
the crystalline region before melting, rather than the somewhat more curved expansion curve
that had been obtained for the small mat. The areal expansion of the large system with
changing temperature is shown in figure 1. Figure 24, b show the structure of the large mat

i

J

Ficure 1. Change of volume per atom in simulation cell with temperature in the large system of 780 atoms:
0, increasing temperature; 0O, decreasing temperature.

at the melting point of 7% = 0.25 and at T* = 107° respectively, after 4000 time steps (200
fluctuation periods) of structural relaxation. As can be seen, the structure of the relaxed glass
is composed of quasi-ordered domains, separated by boundaries of liquid-like material
composed of ordered sequences of five- and seven-sided polygons, which in pairs represent edge
dislocation cores. Figure 3 shows the radial distribution function (RDF) of the relaxed glass in
the large mat before the shearing simulation at T* = 107%. This compares well with the RDF
of the relaxed smaller mat, shown in figure 114 of part I. (RDF not shown.)

In the shearing simulation, the external shear-strain increments were kept quite small at
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(a) after

-like material of 5-7-sided polygons

lﬂ‘”“‘“‘“
<2 ““

e 0se0e0e
)

T* = 0.25 on a normalized temperature scale, (4) the atomic structure of the same material shown in
1
Ficure 3. Radial distribution function of atom positions in the as-quenched glass shown in figure 25.

quenching to T* = 107 and relaxing for 4000 time steps. Note the liquid
]

Fiure 2. (a) Distorted Voronoi polygons in the two-dimensional two-component material at its melting point of
separating quasi-ordered regions.
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PLASTIC DEFORMATION IN AN ATOMIC GLASS 619

5x 107, 50 as to be able to resolve elementary processes in the interior. These shear increments
are much smaller than those imposed by Srolovitz et al. (1983), or by Maeda & Takeuchi
(1982). The shearing was done deliberately at constant volume to stabilize the dilatancy effects
producing early shear localization. To monitor the expected effects of shear localization,
however, the change in external pressure in response to the imposed shear was calculated for
each increment of shear strain. As the starting state of the material for the shearing simulation
was obtained by quenching and relaxing a previously melted mat, all at an imposed external
pressure of p* = 1.0, the shear simulation at constant volume also started with this
superimposed pressure.

The increments of shear strain were applied by shearing all atoms into new positions by an
affine simple shear transformation in the positive y direction. To test for possible asymmetries
in the behaviour of the mat, shearing was also done parallel to the x direction, and resulting
in very similar results, without any sign of asymmetry. Whether the asymmetry in the
behaviour of the small mat resulted from its small size, or its rectangular shape, was not
explored further. In any event, the majority of the results to be presented here are related to
the large mats, which had symmetrical and isotropic behaviour. Upon the application of a
shear-strain increment, the atom positions were relaxed by the Mp procedures. The time
dependent relaxations of the average enthalpy per atom after an affine shear-strain increment
are given in figure 4, which shows that the most unnatural rise in enthalpy due to the imposed

160

enthalpy

1001 1 1 L I
0 500 1000
time steps

Ficure 4. Sequence of enthalpy relaxation in the simulation mat of the two-dimensional material shown in
figure 24, following a small shear strain increment of 5x 107, Note that the most rapid early relaxation is
complete, after 190 time steps.

affine re-positioning of the atoms is eliminated after about 190 time steps, or about 10
fluctuation periods. Relaxations continue more slowly after this time, and would eventually
eliminate any metastable states associated with production of dilatancy and related effects that
were of interest. Therefore, the relaxations were stopped after 190 time steps, followed by a new
increment of shear strain, and so on. Parenthetically, such rates of shear amount to 10® s™ in
real time. The shear induced intensive properties associated with each atom were calculated
after each shear increment. Both the incremental changes in the intensive parameters, and the
accumulated totals were obtained at certain strain levels in the stress strain curve, and will be
presented in detail in what follows.
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620 D.DENG, A.S.ARGON AND S.YIP

3. REsuLTs
3.1. Elastic bulk properties

The elastic properties of the small mat in bulk response were investigated by changing the
cell area systematically, in small increments, in both directions to determine the pressure
response. The resulting volume average pressure—volume curve is shown in figure 54, from
which the small-strain, two-dimensional bulk modulus K,;, under a pressure of 1.0 can be
determined readily around this initial pressure, i.e. at v/y, = 1.0, which was 48 in dimensionless
stress. This will be compared below with the apparent shear modulus obtained from a shear-
stress, shear-strain simulation curve. The atomic displacements and their character that
accompanied this volumetric deformation were not studied. It is expected that some inelastic
volumetric relaxation had accompanied this deformation. Weaire et al. (1971), found in a
similar three-dimensional study, that the inelastic relaxations in volumetric deformation were
much less extensive than the corresponding shear relaxations accompanying an apparent
elastic response. We expect this to be the case here also. As an added feature to this volumetric
response, the shear stress changes that result on the borders of the mat were also monitored,
and are shown in figure 5b. As expected, there were no shear tractions evoked by the
volumetric strains (beyond random fluctuations).

5 — (5)
2 .
L |
[
2
ST 0
(=¥
l S
-2
-1 | l 1 | | . | . I l
0.95 1.00 1.05 0.95 1.00 1.05
vV,

Ficure 5. (a) Dependence of external cell pressure on volume change (area change);
(b) dependence of shear stress on the cell, on volume change.

From the curvature of the pressure-volume curve of figure 54, the pressure dependence of
the two-dimensional bulk modulus can be readily determined, and is shown in figure 6. It is
found to be quite constant over a wide range at a value of

dK/dp = 19. (5)
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PLASTIC DEFORMATION IN AN ATOMIC GLASS 621

Because of the non-dimensional nature of the information, we expect that the value given in
(5) also represents the pressure dependence of the three-dimensional bulk modulus.

By extrapolation of the line in figure 6 to zero bulk modulus, we find that the biaxial cohesive
strength o, of the mat is 1.55 in dimensionless stress units. The ratio of this to the two-
dimensional bulk modulus of 18.8 at zero pressure gives a value of 8.2 x 1072, which we find
quite reasonable. Extrapolation of the curve in figure 5a to zero slope gives the critical areal
strain for two-dimensional decohesion as 0.175.

120

80

KZD

L L l I |
4

Ficure 6. Pressure dependence of the two-dimensional bulk modulus derived from the information in figure 5.

3.2 Shear response

The elasto-plastic shear response of the large mat up to a total shear strain of 0.27, is shown
in figure 7. A clear initial elastic region is visible with a gradual elasto-plastic transition that
is complete at a shear strain of around 0.08, where the boundary shear tractions level off at a
value slightly above 1.0 in dimensionless stress units. There are considerable variations in the
shear resistance between increasing increments of shear strain. This is to be expected from the
relatively small nature of the simulation cell, which even with 780 atoms contains only quite
finite numbers of strain producing configurations. The apparent two-dimensional shear
modulus g,y obtained from the average slope of the initial linear region was found to be 16 in
dimensionless stress units under a pressure of p* = 1.0. From this shear modulus and the two-

Ficure 7. The shear stress—shear strain curve of the model atomic glass sheared isothermally at 7% = 1073,
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dimensional bulk modulus presented in §3.1 above, the fundamental elastic properties of the
three-dimensional reference material under a pressure of p* = 1.0 can be determined through
some well-known relations:

Kop = 3511/ (ST + 511 12— 257), (62)
Kyp = (s +2515) 7Y, (68)

Hop = fsp = 3(S11— $12) 7 = 1/524, (6¢)
E=1/s,, (64)
V=—55,/%11, (6e)

where K, is the three-dimensional bulk modulus, E the three-dimensional Young’s modulus,
v the Poisson’s ratio, s,, is the tensile compliance, s,, the transverse compliance, s,, the shear
compliance, and g4y, = f,p, is the shear modulus of the amorphous alloy. In the determination
of K,p, a three-dimensional solid was considered stretched in only two dimensions under a
constraint of no deformation in the third direction. From the simulation results of u* = 16 and
K}, = 48, the following values were determined from the relations given above: sf; =
2.35x 107%, —s¥, = 7.80 x 1073 in reciprocal dimensionless stress units; Kj, = 42.2, E* = 42.6
in dimensionless stress units; and v = 0.332. The absolute values of the three-dimensional
moduli are lower by about 259, than the values reported by Davis (1978) for amorphous
metals. The calculated Poissons’s ratio is quite close to the values reported for close packed
metals, but considerably lower than the very high value of 0.41 reported by Davis (1978). We
take these results as quite representative, considering that two-dimensional solids usually
entrap higher levels of free volume in the amorphous state, and should therefore, have lower
moduli.

We note that the ratio of the yield stress in shear to the shear modulus is 6.25 x 1072, This
is about a factor of 2 higher than the values exhibited by amorphous metals, back extrapolated
to 0 K (Argon 1982, 1986), but less than one third of the value obtained in the three-
dimensional computer simulation of Srolovitz ef al. (1983). The latter simulation was also
performed by shearing at constant volume, but was performed on a simulation cell so small that
it was likely to be too confined to represent a realistic sampling of the possible shearing
configurations. Figure 7 shows a dip in the plastic resistance at a total shear strain of 0.15.
Although the exact cause of this dip is uncertain, the behaviour could be associated with a large
increase in the concentration of liquid-like material in the mat observed at this same shear
strain, which we will discuss in §4 below. If this is indeed the case, the dip should be attributed
to a size effect in the simulation cell. Outside of this long wavelength variation, the flow stress
remains roughly constant up to the largest shear strain of 0.27. Thus the simulation material
acts as an ideally plastic solid, with no strain hardening. ‘

Simulations of amorphous media by Weaire ef al. (1971) have shown that when compared
with their crystalline counterparts, the elastic moduli of the amorphous materials are lower, but
that while this reduction is only a few percent for the bulk modulus, it is 15-20 %, for the shear
modulus. This difference has been explained by a larger concentration of anelastic non-affine
changes in the apparent elastic range in shear processes, than in bulk expansion. To test this
possibility, as well as to probe the inhomogeneity of the local processes, the shearing direction
was reversed after a forward strain of 0.025, as well as after 0.075 and 0.125, until in each case
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PLASTIC DEFORMATION IN AN ATOMIC GLASS 623

unrestrained plastic deformation in the reverse direction occurred. This is seen in figure 8,
which shows that the unloading in the apparent elastic range (the upright crosses) after a
forward strain of 0.025 does not follow the loading curve, but rather shows a substantial
anelastic hysteresis behaviour. The total inelastic residual strain, when the reversed shear stress
is zero, is around 0.01, or quite close to 409, of the forward strain. The reverse loading

I : 1 i il l 1 l i J
Z01 0.1 0.3
Y

Ficure 8. Portion of the forward shear-stress—shear-strain curve and three curves for reverse deformation,
initiated at forward shear strains of 0.025, 0.075 and 0.125. Note the very prominent Bauschinger effects.

behaviour at the border of the elasto-plastic transition at 0.075 strain (the inclined crosses) and
in the unrestricted plastic flow region at 0.125 strain (the upright triangles) show very
pronounced Bauschinger effects. The total inelastic residual strain upon complete unloading of
the stress was 0.04 and 0.09 respectively, for the two reverse loading paths after 0.075 and 0.125
forward strain. These residual strain magnitudes and inspection of the unloading curves show
directly that the initial unloading slopes are considerably higher than the loading slope. Direct
determination of these initial unloading shear moduli from figure 8 gave a value of 39 in
dimensionless stress units. In an uncomplicated elastic—plastic solid, with no hardening and no
rate effect, such an apparent increase in the unloading modulus would be difficuit to explain.
In our simulation material, however, where considerable anelastic behaviour is exhibited, such
increases in the unloading modulus signify continued forward deformation under stress during
the early portion of the unloading. Thus more rapid unloading should result in a lower
unloading modulus, and vice-versa for a slower rate of unloading.

8.3. Pressure response to shearing

It is well known that plastic shearing of a structurally relaxed disordered material increases
the disorder, because of an intrinsic dilatancy effect. Such deformation induced dilatations
have been measured by Deng & Lu (1983) and Argon et al. (1985) in amorphous
Pd,, ;CugSiye s alloy. As our shear simulations were carried out at constant volume, the
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developing dilatancy was expected to increase the pressure on the simulation cell. This was
found to be the case in both the small simulation cell as well as in the large one. Figure 9 shows
the developing pressure upon shearing in the large system. In the beginning, there is a sudden
and unexplained rise in the pressure, which decays slightly in the strain range of 0-2.5 x 1072,
but then rises monotonically to an asymptotic level of 1.6 in dimensionless stress units at a strain

pressure

[ I N R R

0 0.1 0.2 0.3
4

Ficure 9. Increase in evoked pressure on the simulation cell due to deformation induced volume increase.

of 0.13 (beyond this it remains roughly constant). The rising portion of the curve between
0.025 and 0.13, when extrapolated backwards toward the ordinate line, gives an intersection
roughly at a pressure of 1.0, the pressure under which the earlier structural relaxation was
carried out. The reason for the initial step rise in the response is unclear. After about 0.13 of
strain, conditions remain unchanging. As we shall see below, this coincides with the beginning
of perceptible shear localization. It is expected that shear localization due to dilatancy should
begin very early in the deformation process, but that the conditions of deformation at constant
volume have been responsible for its delay to a strain as large as 0.13.

To explore the changes in the shear induced pressure response, the pressure on the system
during the two reverse loading histories, starting at y = 0.075 and 0.125, was also monitored
and is shown in figure 10. Reversal of deformation results in a rapid and dramatic decrease in
the previously built-up pressure, reaching a minimum of p* = 1.0 at the point where the
reverse stress—strain curve crosses through the point of zero shear stress. Clearly, the decrease
in the pressure must be due to reversals of many of the shear transformations just accomplished
before the reversal of deformation. Such transformations are expected to have nearly identical

| IR B RS R
0—0.1 0.1 0.3

4

Ficure 10. Effect of deformation reversals on the evoked pressure. Note dips in evoked pressure
with reverse deformations initiated at forward shear strains of 0.075 and 0.125.
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environments of residual back stress and associated pressure, which could be systematically
reversed as these transformations are reversed. Once the supply of these most recent
transformations is exhausted in reverse deformation, the early history is wiped out, and new
reverse transformations have to be initiated in fertile but neutral material. Finally, from the
shear induced increase in pressure of Ap = 0.6 between 0-0.13 strain, and the two-dimensional
bulk modulus of 59 at the final pressure of 1.6, where steady conditions of flow are reached,
we calculate an overall change of dilatancy effect of (Av/v)/Ay® = 0.151 for a total plastic
strain increment of 6.75 x 10% between 0 and 0.13 total strain.

3.4. Change in enthalpy and structure due to plastic shearing

The dilatancy of the shearing process serves to make the material more amorphous and raises
its excess enthalpy. At the very low temperature, where the simulation was performed, the
major contribution to the enthalpy of the system is through its change of potential energy (see
Appendix 1). Figure 114, b show the change in potential energy with forward shear and the
two special paths of reverse shear respectively. The potential energy changes are parallel to the
changes in deformation induced pressure resulting from the dilatancy, which itself is a direct
cause of the rise in enthalpy.

-19 — )

V/E,
1
©
|

—2.101 . ] s | A ] A |
—-0.1 0.1 0.3
: Y

Ficure 11. (a) Change in potential energy per atom (enthalpy per atom) in dimensionless units of energy as a
function of shear strain. The close parallel of this behaviour to that of the pressure shown in figure 9 indicates
that the increases in enthalpy are due to the dilatancy effect; (b) changes in the potential energy upon
deformation reversals. . :

The corresponding changes in the structure due to dilatancy induced amorphization are also
apparent in the rDFs. Figure 12 shows the RDF of the material at a strain of 0.10. Comparison
of this with the rDF in figure 3 shows a very clear broadening of the distribution with decreases
in the peak heights and filling-in of the regions between the peaks. This change in the RDFs due
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Ficure 12. Radial distribution function of atom positions of the simulation cell after a shear strain of 0.1.

to reamorphization proceed most rapidly in the very early straining range between 0 and 0.08,
where fully established plastic flow conditions are achieved, but continues more slowly up to
0.13, where the rise in shear induced pressure ceases. After about 0.10 (the state in figure 12),
the further changes in the RDF with shearing are less dramatic than in the early phases. The
observed amorphization is a consequence of plastic shearing, even in the apparent elastic range,
where as we shall see below, inelastic transformations occur with sufficient frequency.

3.5. The topological features of local plastic flow
3.5.1. Plastic flow at yield

To establish the nature of plastic flow in the simulation, we present first the distribution of
local shear transformations and describe the environments in which they occur for a small
plastic-strain increment of Ay® = 5x 107 near the macroscopic yield region of the elastic to
plastic transition, at a total strain of y = 0.05.

FIGure 13. Incremental displacement field of atoms due to a shear strain of 5x 107 at a total shear strain of
0.051. Note several of the clusters undergoing cooperative deformation. (Ay'= 0.0515-0.052.)

Figure 13 shows the incremental displacement field of the atoms in units of the fundamental
length 7, during the plastic increment. Each displacement vector emanates from the atom with
which it is associated. Such a displacement field, presented by most investigators in the past,
as the only feature of the plastic deformation is too confusing to provide much enlightenment.
Nevertheless, it is possible to outline in it regions where the most intense activity is
concentrated, such as the eight regions that have been delineated by closed contours. They
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resemble to some extent the zones of concentrated (C) and diffuse (D) shear transformations
identified by Argon & Kuo (1979) in sheared Bragg soap bubble rafts. Here, we will not pursue
details of displacement fields further, but rather concentrate our attention on the field of local
strain spikes introduced first also by Argon & Kuo (1979). Thus, figure 144 shows the
incremental maximum shear strain spikes (regardless of their principal axes) that have resulted
during the specific macroscopic plastic strain increment under consideration. The ac-
companying local dilatation spikes (upright triangles represent positive quantities) are shown
in figure 144. As the simulation has been performed under constant volume conditions, the
volume average sum over all the dilatation spikes should give zero. Clearly, many dilatancy
events have been either suppressed or perhaps even reversed by this condition, or in the least
have affected their surroundings somewhat by pressurizing the background.

.....
PP SIRY S
.‘.erA.-n

Ficure 14. (a) Local atomic level maximum shear spikes, regardless of principal axis orientation in the simulation
field for an external imposed shear strain increment of 5 x 107* at a total shear strain level of 0.051; (b) the
corresponding atomic site dilatations associated with the shear strain increment of (). (Ay = 0.051-0.0515.)

Inspection of figure 144 shows that the local shear-strain spikes are quite large, with many
of them being in the range of 0.05-0.10, and some are somewhat larger. This occurs during an
external total strain increment of only 5 X 107%. Thus, clearly, the local plasticity is in the form
of shear transformations, with transformation shear strains of the order of 0.05-0.10 in local
volume elements. This is quite similar to the kinematics of plastic flow studied by Argon & Shi
(1982) in the Bragg soap bubble rafts, where transformation shear strains of these magnitudes
were also observed.

A point of primary interest in this simulation is the description of the most relevant
state parameter of the local environment, in which the local shear spikes develop. Four primary
candidates that must be considered are shown in figure 15a—d. They are:

(1) the local atomic level maximum shear stress (regardless of orientation of principal axes);

2) the atomic level pressure and negative pressure (upright triangles represent pressure);
3) the local free volume; .
4) the local atomic site distortion parameter;

(
(
(
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all evaluated at the beginning of the specific, small plastic-strain increment, which is the subject
of discussion. ;
Comparison of figure 144 with 145 shows a reasonable visual correlation between the local
dilatations and the local shear strain spikes everywhere in the field, but especially in the upper
right quadrant and along the diagonal zone radiating from the centre of the figure into the
upper left quadrant. Correlation of the shear spike distribution with the distributions of the
atomic level maximum shear stress and atomic level pressure, shown in figure 154, b, is weak
at best. The best evidence of any such correlation is in the centre of the cell, in small portions
of the lower left-hand quadrant and lower right-hand corner of the lower right-hand quadrant
for the maximum shear stress. For the pressure, the correlation is roughly at the same places,

. v,

8,0

H,EII-.-..

Ficure 15. (a) Distribution of atomic site maximum shear stress, (b) distribution of atomic site pressure (a) and
negative pressure (v), (¢) distribution of free volume among atom sites, (d) distribution of atomic site distortion
parameter; all at a total shear strain of 0.051 considered as description of the initial state for a subsequent
increment of shear strain of 5 x 1074,
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but even weaker. On the other hand, the correlation between the sites of the maximum shear
strain and both the free volume (figure 15¢) and the atomic site distortion parameter (figure
154d) is quite striking. The latter two are, of course, specific quantitative characterizations of
the boundaries between the quasi-ordered domains, where the liquid-like material con-
centrates, as can be seen by comparing figure 15¢, 4 with figure 25. That this is bound to be
the case must be clear from the fact that in the liquid-like material there is a concentration of
excess free volume and the local distortion. This has produced a significant reduction of
cohesive interaction, as we have discussed in detail in parts I and II, and as can be deduced
also from the discussion in §3.1 above.

3.5.2. Character of shear transformations

As the plastic shear events are enforced by the imposed Ay, shear (or alternatively by the
applied shear stress 7,,), it is of interest how well the local shear spikes are polarized by these
driving forces. To probe this, only the xy components of the shear spikes were determined, and
their magnitudes are plotted in figure 16. A cursory check of the integrated magnitudes of these

Ficure 16. Distribution of local atomic level xy shear strain increments during an externally imposed shear
strain increment of 5 x 1074, at a total shear strain of 0.051. (Ay = 0.051-0.0515.)

shear strain spikes has shown that this total integral over the field exceeds considerably the
applied shear increment of 5 x 107%. This observation disclosed that a significant fraction of the
total shear events shown in figure 16 are actually of a negative sign, and occur against the
applied stress. Figure 17 shows the distribution of both the positive and negative shear spikes
during the specific plastic strain increment. This startling behaviour of reverse local shear
against the applied shear stress is readily explained when it is recognized that the root mean
square level of excess enthalpy associated with the structural disorder is many times larger than
the work done by the applied stresses interacting with the local strain increments. Thus, as
primary shear transformations occur in and around the liquid-like regions, they momentarily
destroy local mechanical equilibrium and permit some surrounding material to lower its Gibbs
free energy, even at the expense of doing work against the applied stress. This fact was
confirmed by studying the Gibbs free energy change for a number of local cluster systems as
46 Vol. 329. A
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Ficure 17. The distribution of xy shear strains of positive and negative sign occurring during an externally imposed
shear strain increment of 5 x 107 at a total shear strain of 0.051, the squares are strain spikes, and are in the
same direction as the applied strain increment, the diamonds are of negative sign. (Ay = 0.051-0.0515.)

a function of strain in which shear transformations had been observed, regardless of sign. In
all instances, the Gibbs free energy was found to decrease monotonically (see Appendix 1), as
a function of increasing average strain. Two typical cases are shown in figure 184, 4. Of these,
figure 184 pertains to a case of positive local shear strain, while 184 pertains to a case of
negative local shear strain. These figures also show that the monotonic decline of the free
energy is interrupted at many places by energy barriers of varying height. These are
interpreted as barriers that can be overcome by thermal activation under a constant applied
stress at higher temperature. Accordingly, the frequency distribution of these barrier heights
was determined over the history paths of six separate clusters as an indication of the distributed
nature of the shear relaxation processes. This distribution is shown in figure 19. It demonstrates
that while the majority of the energy barriers are less than E, (i.e. 0.15 eV), some are nearly
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Ficure 18. The specific history of plots of two separate clusters showing the monotonic decrease in Gibbs free energy
accompanying a monotonic rise in shear strain: (a) cluster shearing in the same direction as external shear
increment; (b) cluster shearing in the opposite direction.
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Ficure 19. Frequency distribution of free energy barriers on the monotonic decrease of the Gibbs free energies
in deforming clusters, as obtained from history plots of the type shown in figure 184, b.

Y |

a factor of 10 larger. The information derived from these observations, however, is too
incomplete for purposes of quantitative comparisons with experimental distributions of the
. type studied in detail by Deng & Argon (19864, b), from internal friction measurements.

Examination of figure 17 also shows that once the forward and reverse shear processes are
separated, a significant amount of clustering of shear processes of either type becomes more
apparent. Among these clusters, those that are of elongated and concentrated shear type, as
classified by Argon & Kuo (1979), immediately stand out. The diffuse shear transformations,
as usual, are more difficult to identify. Part of this difficulty is associated with the lack of time
resolution in the chronology of appearance of individual processes. Even in the span of a very
small plastic strain increment, such as the one on which the information in figures 14-17 is
based, many transformation events, actually separated in time, have become superimposed.

The proximity of the clusters producing positive and negative shear to each other also attests
to a cause—effect relation between the two. The change in local atomic configurations during
the development of a forward shear cluster upsets mechanical equilibrium in the immediate
surrounding regions, and can trigger a reverse shear-producing cluster if the initial misfit
incorporated in that region is conducive for such a reverse transformation.

A similar form of clustering is also perceivable in the distribution of the dilatation spikes,
shown in figure 145. In many regions where upright triangles are clustered, indicating
dilatation increments, the immediate local surroundings show rings of downright triangles
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Ficure 20. Distribution of local total xy shear strains in the initial apparent elastic response range:
(a) at a total shear strain of 0.0125; (b) at a strain of 0.025; () at a strain of 0.05.
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indicating inelastic local compaction. Both of these changes correlate reasonably well in spatial
distribution with the shear processes, as already pointed out above.

Examination of the distributions of local coupled shear and dilatational transformations in
different regions of the stress—strain curve indicated that regions in which transformations were
found in earlier stages of straining could transform again, later. As in the vast majority of cases,
the shear transformations occurred in and around the boundaries of liquid-like material
separating quasi-ordered domains; this repetition, in time, of local shear activity in the fertile
boundary regions, attests to the true liquid-like nature of this material. As these boundaries
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Ficure 21. Sequence of development of shear localization in the simulation cell due to the accumulated effect
of deformation induced dilatations. (a) y = 0.05, () ¥ = 0.10, (¢} y = 0.15, (d) ¥ = 0.70.
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were not planar but intricately tortuous, increasing strain must shift them around, so as not to
build up large plastic misfit stresses in the quasi-ordered domains. That this is indeed the case
can be seen from the set of frames shown in figure 24 a—d.

3.5.3. The elastic-to-plastic transition

In §3.2 it was demonstrated, by means of reverse loading within the apparent elastic range,
that inelastic non-affine processes must be occurring even in this range of response of the
material. That this is indeed so, is shown in figure 20a—c, which shows the total accumulated
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Ficure 22. Distribution of deformation induced local volume changes during externally imposed strain increments
of 5% 10~ at total strains of: (a) y =0.05 (Ay=0.0505-0.051); (6) y=0.10 (Ay= 0.1005-0.101) ;
(c) y = 0.15 (Ay = 0.1505-0.151) ; and (d) y = 0.20 (Ay = 0.2005-0.201).
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Y2y Strain in the apparent elastic range at total average strains of 0.0125, 0.025, and finally at
0.05, where the most rapid transition to fully developed plastic flow begins. Examination of
these three plots shows that inelastic strains in this range do not spring-up as shear
transformations with the same full strength as they have during fully developed plastic flow.
They rather grow gradually and incrementally in fertile regions that lie in or near to the liquid-
like material. Thus they are more of an anelastic nature, permitting them to return to nearly
the undistorted state of the material when the stress is removed (albeit accompanied by a
hysteresis effect).
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Ficure 23. Distribution of total accumulated local dilatations at atom sites at total strains of (a) y = 0.05,
(6) y =0.10, (¢) y = 0.15 and (d) y = 0.20.
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3.5.4. Shear strain localization

The dilatant nature of plastic flow in ductile amorphous media has been proposed to be the
source of strong shear localization in these materials at low temperatures and high strain rates
(Spaepen 1977; Argon 1979; Argon et al. 1985; Steif ef al. 1982), where the shear induced free
volume or newly formed liquid-like regions do not decay fast enough by thermally controlled
structural relaxations. This should be particularly the case at the low temperature of the
present simulation. These regions then catalyse further shear transformations and progressively
localize the deformation into intense planar shear zones (Argon 1979; Steif et al. 1982). This
phenomenon has been observed directly in the simulation cell. Figure 21 a—d show a sequence
of cumulative shear activity in the strain range of 0.05-0.2. The localization of shear into
planar zones in the simulation cell is apparent. To establish the connection of this localization
to dilatancy, both the incremental changes in local volume (figure 22 a-d), as well as the total
accumulated dilatation (figure 23a—-d) was determined for these four states of total strain. It
needs to be kept in mind that the simulation was carried out under conditions of constant
volume. Therefore, the total integrated volume changes must be zero for all cases, and the total
dilatation must be the same as that in the initial state of the simulation. Thus the intrinsic
dilatancy of the flow, which clearly manifests itself in the shear induced pressure rise, shown
in figure 9, must produce local inelastic dilatation spikes in regions of flow concentration as well
as some spikes of material compaction in the immediate neighbourhood. Clearly, in this
process, the inelastic dilatations must dominate, because they elastically pressurize the entire
simulation cell. The sequence of figure 22a-d shows that incremental dilatancy activity does
indeed fall into the zones of the apparent shear localization. The correlation is much more
striking when viewed as the total accumulated dilatations, as shown in figure 23 a—d, where the
correlation of the localized accumulated dilatations with the localized shears, shown in figure
21 a—d, is clear.

4. DiscussioN

As stated in §1 above, the description of the mechanism of plastic flow in amorphous media
has created much controversy. Gilman (1968), Li (1976), and others (Chaudhari ¢t al. 1983;
Shi & Chaudhari 1983) have drawn specific analogies between the plastic flow mechanisms in
nearly perfect crystals, where long range mobility of crystal dislocations produces strain, and
the plastic flow in amorphous metals, where shear localization is frequently observed at low
temperatures and high strain rates (Spaepen 1977; Argon ef al. 1985; Megusar et al. 1979).
Two compelling points in support for this view are the observed intense shear localization
process, as already mentioned, and an observed second-order kinetics in the thermal recovery
behaviour of deformed samples (Ahn & Li 1983), not to mention the great attraction to
immediately capitalize on many other explanations of crystal plasticity for allied phenomena
observed in amorphous metals. Many adherents of this point of view have extended the
anology also to glassy amorphous polymers, even though there the chain molecules would
introduce important constraints to any concentrated shear process. As there are important
differences even in the phenomenology of the deformation of polymeric materials, we do not
pursue their discussion here further either for or against the above point of view.

A separate compelling reason for taking a dislocation point of view for the behaviour of
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amorphous atomic solids is the many thought-provoking theoretical studies of a topological
nature of transforming a crystalline solid into an amorphous one by progressively dislocating
it (Koizumi & Ninomiya 1978, 1980). A further stimulus in this direction comes from equally
interesting studies on the melting of crystalline solids by introducing increments of disorder
through dislocations, and demonstrating that this process can give rise to sharp melting
behaviour (for a general review of the early work see Nabarro (1967)). When carried out with
care (Kuhlmann-Wilsdorf 1971 ; Kotze & Kuhlmann-Wilsdorf 1971), both the latter and the
former theoretical studies do indeed lead to relaxed structures that exhibit most of the
quantitative signatures of the glassy state. On the basis of this, it could then be argued that the
dislocations that have led to the end state might have vestigial properties that can be mobilized
for the processes of plastic deformation, in spite of the fact that the amorphous condition can
be reached also by melting and severe radiation damage (Cherns et al. 1980). Nevertheless, the
attraction of this indirect reasoning should be clear in the light of what we have presented in
this paper and in parts I and II. In these studies we see, however, that the role of the
dislocations and their vestigial properties are not to provide mobile configurations, but to
introduce fertile matter that makes possible plasticity by shear transformations, which have no
mobile properties, but are initiation controlled.

The alternative mechanism to explain plastic flow in amorphous atomic media is based on
shear transformations in local small atom clusters proposed first by Orowan (1951) to explain
viscous deformation. This was later generalized by Argon and co-workers (Argon 1979, 1982;
Argon & Kuo 1979; Argon & Shi 1982) to explain most observed inelastic phenomena in
atomic glasses, including the rate process of deformation, the temperature dependence of the
flow stress over its entire range from 0 K to 7, and the distributed nature of the rate controlling
process. Separately, Spaepen and co-workers (Spaepen 1977; Taub & Spaepen 1980) have
developed a point of view of shear relaxations in a region of free volume where enhanced
mobility of atoms should be preferred because of the lowered level of cohesive interactions. This
mechanism of plasticity by local shear transformations has found support from many other
investigations, including those based on computer simulations (Srolovitz ¢f al. 1983; Maeda &
Takeuchi 1978). These latter investigations and the simulations based on the disordered Bragg
bubble model (Argon & Kuo 1979; Argon & Shi 1982) have provided important information
on the particular fertile neighbourhoods, in which shear transformations develop.

Thus, our simulations on melting, structural relaxations, and on plastic flow, presented in
parts I and II, and in this paper, have given a certain unification to many of these diverse
points of view. The simulations on melting and structural relaxations have demonstrated that
the disorder in the amorphous material can be divided into quasi-ordered regions of very small
dimensions of 3-10 atoms across and internally disordered boundaries, surrounding these
quasi-ordered regions. These boundaries, which percolate through the entire structure, exhibit
topological signatures of dislocation cores that are apparent in the form of ordered sequences
of five- and seven-sided polygons. Here, contact is made with the dislocation theories of melting
and amorphization (Koizumi & Ninomiya 1978, 1980; Kuhlmann-Wilsdorf 1965 ; Kotze &
Kuhlmann-Wilsdorf 1971), and other analogue simulations using vibratory agitation of Bragg
bubble rafts (Fukushima & Ookawa 1955). The present simulation on plastic flow on the other
hand, has reinforced rather strongly the points of view of deformation by nucleation of shear
transformations in fertile regions, which have turned out to be along the boundaries of
disordered material composed of dislocation cores. Here, contact has been made with
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Ficure 24. Deformation induced changes in the distribution of liquid-like material represented by the boundaries
of 5-7-sided polygons: (a) after a total strain of y = 0.05, note a dipole of two-edge dislocations at site marked
A; (b) after y = 0.10, note the separation of the two-edge dislocations from the dipole configuration; (¢) after
v = 0.15, note that the left-hand dislocation has now entered the cell from the right side; () after y = 0.20.
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theoretical studies on fluidity in melts and subcooled melts, attributing the fluidity to liquid-
like material percolating through the structure (Cohen & Grest 1979; Grest & Cohen 1981).

We recognize that the simulations presented here, and in the associated studies of part I and
part II, are two-dimensional, and that three-dimensional material will have another degree of
freedom in accomplishing the topologically complex redistribution of structural disorder and
repositioning of atoms in shear transformations. We maintain, however, that our simulations
have captured the qualitative essence of these complex processes, which differ in three-
dimensional matter only quantitatively. On the other hand, the powerful capability of
visualization of processes in a plane, have been in our view, of vital importance.

As in our simulation mats of well-relaxed glasses small quasi-ordered regions exist, the lack
of a contribution to the overall strain by dislocation glide is surprising. Actually, some evidence
for such isolated glide events has also been found. In addition to the short-range glide motion
under the mutual interaction of two 60° dislocations during structural relaxation that has
already been pointed out in part II (see figure 3a—¢ in part II), a rare instance of stress initiated
glide is shown in the deformation sequence of figure 24 a—d, in which the stages in the mat are
seen between a total shear strain of 0.05-0.20. In figure 244, a closely spaced dipole of
dislocations is seen in the region marked as A. In the successive frames, the dipole is separated,
and the two dislocations are driven apart. In figure 24 4, the positions of the dislocations are
marked with arrows. In figure 24¢, the dislocation on the right has already been incorporated
into a boundary, while the one on the left has entered the simulation cell on the other side, and
is shown with an arrow. In figure 244, this dislocation too seemed to have been trapped by a
boundary that has reached it. The shear strain contributed to the total strain in the simulation
cell can readily be estimated as bx/4, where x is the total distance of separation of the
dislocations, i.e. about 20 Voronoi polygons, b is the Burgers vector, and 4 the area of the mat,
i.e. 780 Voronoi polygons. This gives a strain contribution of 20/780 = 0.0256, which makes
up about 11 9, of the total inelastic strain in the simulation, and thus is not a negligible amount.
There were, however, no other unambiguous glide events that could be found. There are two
reasons why such events are not more numerous. First, the dislocation glide appears to be

150 —

non-hexagon number

50 | l |

Ficure 25. Variation with strain of the total number of liquid-like material polygons with edges
different than six.
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subject to a significant lattice drag, indicated by the many metastable configurations of two
adjoining polygons of five sides, and second, the near impossibility of operating dislocation
sources at the lower stress levels within the confines of the very small quasi-ordered regions.
Thus, the shear transformations dominate the deformation even though they have no mobile
character, but have the overwhelming advantage of a large volume fraction of fertile material,
where they can be initiated.

Figure 24¢-d also shows that as the deformation proceeds, the liquid-like material itself
deforms and reconstitutes itself in a non-affine manner. In fact, the overall fraction of the
liquid-like material itself varies in a fluctuating way, as the shearing continues. This is shown
in figure 25, where the total numbers of non-hexagonal Voronoi polygons are plotted as a
function of strain. The figure shows that the initial high concentration of this fertile material
is depleted with shear in the apparent elastic range of deformation. Further shearing produces
relatively large amplitude variations due to the shear induced dilatations and compactions.
Around a strain of 0.15, a significant increase in the fraction of this material takes place. This
coincides with the dip in the flow stress, shown in figure 7, and is most likely the explanation
for it.
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APPENDIX 1. FREE ENERGY CHANGES DUE TO TRANSFORMATIONS

A shear transformation changes the Gibbs free energy of the simulation cell in a well-known
way (Kocks et al. 1975), as

AG = AF— AW, (A1)

where AF is the Helmholtz free energy change in the transformation, and AW the work done
as the external tractions are displaced due to the local transformation. Expansion of the
expression for the Helmholtz free energy in (A 1) gives

AF = AU—-TAS = AE, +AV—TAS, (A 2)

where AU is the internal energy change which can be divided further into a change in potential
energy AV, and kinetic energy change AE, of the atoms affected by the transformation. The
entropy change AS is primarily of a vibrational nature. In the Mp method, the AE, is given by

n Nt
AE =im3 — f 22(t) dt. (A 3)
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